Ensemble Of Deep Neural Networks For Acoustic Scene Classification

نویسندگان

  • Venkatesh Duppada
  • Sushant Hiray
چکیده

Deep neural networks (DNNs) have recently achieved great success in a multitude of classification tasks. Ensembles of DNNs have been shown to improve the performance. In this paper, we explore the recent state-of-the-art DNNs used for image classification. We modified these DNNs and applied them to the task of acoustic scene classification. We conducted a number of experiments on the TUT Acoustic Scenes 2017 dataset to empirically compare these methods. Finally, we show that the best model improves the baseline score for DCASE-2017 Task 1 by 3.1% in the test set and by 10% in the development set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Pairwise Decomposition with Deep Neural Networks and Multiscale Kernel Subspace Learning for Acoustic Scene Classification

We propose a system for acoustic scene classification using pairwise decomposition with deep neural networks and dimensionality reduction by multiscale kernel subspace learning. It is our contribution to the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2016). The system classifies 15 different acoustic scenes. ...

متن کامل

Deep Sequential Image Features for Acoustic Scene Classification

For the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2017), we propose a novel method to classify 15 different acoustic scenes using deep sequential learning, based on features extracted from Short-Time Fourier Transform and scalogram of the audio scenes using Convolutional Neural Networks. It is the first time...

متن کامل

Attention Based CLDNNs for Short-Duration Acoustic Scene Classification

Recently, neural networks with deep architecture have been widely applied to acoustic scene classification. Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory Networks (LSTMs) have shown improvements over fully connected Deep Neural Networks (DNNs). Motivated by the fact that CNNs, LSTMs and DNNs are complimentary in their modeling capability, we apply the CLDNNs (Convolutiona...

متن کامل

Adsc Submission for Dcase 2017: Acoustic Scene Classification Using Deep Residual Convolutional Neural Networks

This report describes our two submissions to the DCASE-2017 challenge for Task 1 (Acoustic scene classification). The first submission is motivated by the superior performance of the deep residual networks for both image and audio classifications. We propose a modified deep residual architecture trained on log-mel spectrogram patches in an end-to-end fashion for acoustic scene classification. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.05826  شماره 

صفحات  -

تاریخ انتشار 2017